
Distributional Semantics and CPA Pattern Disambiguation

Tuan Do
Brandeis University

tuandn@brandeis.edu

James Pustejovsky
Brandeis University

jamesp@brandeis.edu

Abstract

This paper presents a methodology to
automatically generate prototype vectors
(PV) for patterns using the Pattern Dictio-
nary of English Verbs (PDEV) repository,
by means of a distributional semantic ap-
proach. In particular, we have generated,
for each verb pattern in PDEV a PV by in-
corporating vectors (trained on Skip-gram
Negative Sampling) of context words in
patterns and concordances. We demon-
strate how to use the resulting prototype
vectors to disambiguate patterns in a com-
putationally inexpensive way. In addition,
we develop a modified model, called Skip-
gram Backward-Forward (SG-BF), which
improves the overall performance of the
disambiguation system.

1 Introduction

Word sense disambiguation (WSD) and word
sense induction (WSI) have been the focus of re-
search in Natural Language Processing for several
years. To this end, there have been many efforts
to create a framework for sense inventory creation
and sense-annotated corpora. Among the most no-
table recent approaches is Corpus Pattern Analy-
sis (CPA) (Hanks and Pustejovsky, 2005), with
the output being the Pattern Dictionary of English
Verbs (PDEV)1, which has a rich inventory of pat-
terns for over 1,000 English verbs. The corpus is a
significant resource in its careful selection of pat-
terns based on analyzing verb arguments and col-
locates in a corpus-driven manner. Given that the
pattern library is still under development, however,
there has been little opportunity to utilize it for
downstream NLP experiments and applications.

Distributional semantic models (DSMs), based
upon the assumption that words appearing in sim-

1http://pdev.org.uk/

ilar contexts are semantically related (Harris,
1968), have proven to be a robust and inexpen-
sive approach for a number of applications, in-
cluding WSD (McCarthy et al., 2004). In the
past few years, some DSMs have been developed
that successfully represent word vectors in low-
dimensional space, such as the Skip-gram (SG)
model, proposed by Mikolov et al. (2013b). Their
model creates vectors that can be used effectively
in analogy tasks (Mikolov et al., 2013a), e.g., as
in the 2×2 matrix filling task: king − man +
woman ∼ queen. The success of the model re-
sults in part from the fact that it requires only a
short training cycle, thereby providing a ready-to-
use tool for analysis.

While the SG model has been successful for
identifying some word relations, in particular
named entity pairs such as (Capital City, Nation),
some modifications must be made in order to
adopt the model to capture verb semantic pattern
behavior. For nouns, it is fairly straightforward
to identify a fixed (and small) set of semantic re-
lations among them, such as hyponymy and syn-
onymy. Semantic relations for verbs are much
subtler and therefore are harder to define. This is
largely because of the complex nature of relational
terms, whose meanings are modulated through
composition and context (cf. (Mitchell and Lap-
ata, 2008) and (Kintsch, 2001)).

In this paper, we examine the application of the
Skip-gram model in WSD, using the PDEV pat-
tern set and accompanying corpus (Hanks, 2013).
In particular, we create, for each pattern selected
from the PDEV corpus, a prototype vector, which
will be used for disambiguation. We also devise a
new model we call Skip-gram Backward-forward
(SG-BF), to be used specifically for verb pattern
classification. Our experimental results show that
while SG works well for the task of pattern disam-
biguation, SG-BF significantly improved the over-
all F1-score of the system.

2 Related Work

This work is motivated both by recent research
on DSMs that have proven useful to a number of
NLP problems, such as syntactic parsing (Socher
et al., 2013), named entity resolution (Passos et
al., 2014), compositional semantics (Baroni et al.,
2014), as well as by the philosophy behind Cor-
pus Pattern Analysis (CPA) and its PDEV corpus
(Hanks, 2013). We believe CPA and PDEV will
be of great use for research on WSD and WSI,
as initiated by the recent SemEval 2015-CPA task
(Baisa et al., 2015).

Distributional semantic Models As mentioned
above, distributional semantics constitutes a grow-
ing subfield within Computational Linguistics,
having a large array of methods and approaches
(cf. Clark, 2015). Recent approach includes Dis-
tributional Memory (Baroni and Lenci, 2010), a
structured DSM taking into account the syntactic
dependency of words. We adopt and simplify this
idea in our work by using the relative location of
the context word with the target word as clues for
its syntactic relation. Mikolov et al. (2013b) de-
velop the specific Skip-gram model that we adapt,
which will be described in more detail below.
There is also the work of Huang et al. (2012) and
Neelakantan et al. (2014), among others, focus-
ing on DSMs that generate multiple vectors for
different senses of words. These approaches are
neural network models that use clustering meth-
ods to learn multiple word-sense vectors, at the
same time as training the network. Both groups
have experimented with a fixed number of word
sense vectors for each word, while the latter has
also experimented with a variable number of word
senses. We extend this idea to develop multiple
prototype vectors for word patterns.

Work on Corpus Pattern Analysis The Se-
meval 2015-CPA task introduced some of the first
open computational investigations using Corpus
Pattern Analysis. The task mostly focuses on au-
tomatic derivation of verb patterns from a corpus.
For PDEV pattern disambiguation, on the other
hand, to the best of our knowledge, the only works
reported are those performed by El Maarouf and
Baisa (2013) and El Maarouf et al. (2014). Their
systems will be explained in more detail when we
discuss the results of our system. Both have been
tested on a subset of 25 verbs and their corre-
sponding verb patterns.

3 Background

3.1 PDEV Patterns and Corpus

The PDEV corpus is built upon the BNC, using the
methodology of Corpus Pattern Analysis, first out-
lined in Pustejovsky et al. (2004), and then devel-
oped in Hanks and Pustejovsky (2005) and Hanks
(2013). Corpus Pattern Analysis (CPA) is a tech-
nique for mapping meaning onto words in text. It
is the methodology used to build the Pattern Dic-
tionary of English Verbs (PDEV), which will be a
fundamental resource for use in computational lin-
guistics, language teaching, and cognitive science.
It is based on the Theory of Norms and Exploita-
tions (TNE, see Hanks 2004 and 2013, Hanks and
Pustejovsky 2005, Pustejovsky et al.,2004). TNE
in turn incorporates many ideas from Generative
Lexicon (Pustejovsky, 1995), preference seman-
tics (Yorick Wilks, 1975), and Sinclair’s influen-
tial work on corpus analytics (eg. Sinclair 1966,
1987, 1991, 2004).

With CPA, verb senses are distinguished
through corpus-derived syntagmatic patterns. A
CPA pattern extends the traditional notion of se-
lectional context to include a number of contex-
tual features, such as minor category parsing, sub-
phrasal cues, and a shallow semantic ontology.
Accurate identification of the semantically rele-
vant aspects of a pattern is not an obvious and
straightforward procedure, as has sometimes been
assumed in the literature. For example, the pres-
ence or absence of an adverbial of manner in the
third valency slot around a verb can dramatically
alter the meaning of a verb.

CPA patterns capture multiple facets of a word’s
usage. For each pattern, there is a partially defined
structural template, providing the semantic cate-
gories of the collocate expressions (arguments).
Additionally, implicatures can be associated with
specific patterns. Take the verb fire, for example:

No. Pattern

1
Pattern Human fires Firearm (Direction)
Implicature Human causes Firearm to discharge
a projectile towards Physical Object = Target

3
Pattern Human or Firearm fires (Direction)
Implicature Human causes Firearm to discharge a
projectile (in a particular direction)

Table 1: Examples of patterns in PDEV

The PDEV corpus has a semantic ontology in-
cluding semantic types such as Human, Institution
etc. (Pustejovsky et al., 2006; Rumshisky et al.,

2006). It should also be noted that PDEV makes a
distinction in verb alternations, as reflected in the
two patterns of the verb fire in Table 1: Pattern
No. 3 is the no-object alternation of Pattern No. 1.

3.2 Skip-gram Negative Sampling Model

wordi

Word vector

vw(i)

Context vector

v′w(i−1)

v′w(i−2)

v′w(i+1)

v′w(i+2)

Figure 1: Skip-gram Snapshot of training process
at wordw(i), 4 context word vectors in its window
size of 2.

In their paper, Mikolov et al. (2013b) exper-
imented with a number of methods for learning
word embedding vectors, including CBOW, skip-
gram with negative sampling (SG-NS), and skip-
gram with hierarchical softmax (SG-HS). The SG-
NS model performed the best among these meth-
ods. The training time and memory usage of SG-
NS is also lower because of its “on-the-fly” nature.

Let w(i) be the word at position i of a docu-
ment. In a Skip-gram model, there are two vectors
corresponding to w(i), vw(i), v

′
w(i) ∈ Rd, where

d is the number of embedded dimensions; v is
the word vector, v′ is the context vector. The
purpose of the training method is to optimize the
probability of seeing a word w(k) in the context
of another word w(i). This probability can be
represented as a softmax of the dot product be-
tween a target word vector (vw(i)) and a context
word vector (v′w(k)), where k takes in the values of
{i−window, .., i− 1} ∪ {i+1, .., i+window}:

P (w(k)|w(i)) = f(v′w(k), vw(i))

=
exp(vw(i) · v′w(k))∑

u∈V ocabulary exp(vw(i) · v′u)

However, a direct calculation of the softmax
function and its differential involves iterating over

the whole vocabulary, which is very expensive. An
alternative is to learn a target function that can dis-
tinguish among samples observed from data and
ones drawn from a noise distribution. The objec-
tive function therefore is modified to:

log(
1

1 + exp(−vw(i) · v′w(k))
)

+
∑

u∼PN (w)

log(1− 1

1 + exp(−vw(i) · v′u)
)

where PN (w) is a noise distribution that is scaled
with the word distribution in the training corpus.
The number of noise samples drawn from the
noise distribution is a predetermined number. Op-
timizing the objective function is achieved by a
method of stochastic gradient descent.

4 Skip-gram Negative Sampling
Backward-Forward

The Skip-gram negative sampling Backward-
Forward model (SG-NS-BF) takes into account
the relative position of context word and current
(target) word. This modification is motivated by
the fact that the distribution of words before and
after a verb typically correspond to its subject and
complement collocations, respectively. Therefore,
the context distribution before and after the verb
are significantly different. A robust system applied
for verb meaning needs to leverage this difference
to achieve higher performance. While we do not
use dependency parsing to obtain argument and
complement features, using before/after relative
positions of context word is already an improve-
ment over the bag-of-word method, given the ob-
servation that for most of the verb patterns, one of
two voices is significantly dominant over the other.

To capture the difference between the words be-
fore and after a verb, we modified the vector model
of the skip-gram so that each vector is composed
of two component vectors. For both the target
word vector, v, and the context word vector, v′,
their left and right component vectors, which we
will use ,L and ,R for denotation respectively, rep-
resent the distribution of words before and after
them. The combined vector is made by stacking
the left and right components together.

Learning in the SG-NS-BF model targets
matching the left component of the current word
vector and the right component of the context

wordi

Word vector

vw(i),L

vw(i),R

Context vector

vw(i−1),L

vw(i−1),R

vw(i+1),L

vw(i+1),R

Figure 2: SG-NS-BF Snapshot of training process
at word vector vw(i), 2 context word vectors in its
window size of 1. The left component of word
vector is associated with right component of con-
text vector before it and vice versa.

word vector, if the context word appears before the
current word and vice versa. The objective func-
tion for negative sampling therefore is changed to:

log(
1

1 + exp(−vw(i),L · v′w(k),R)
)

+
∑

u∼PN (w)

log(1− 1

1 + exp(−vw(i),L · v′u,R)
)

if k ∈ {i− window, .., i− 1}

log(
1

1 + exp(−vw(i),R · v′w(k),L)
)

+
∑

u∼PN (w)

log(1− 1

1 + exp(−vw(i),R · v′u,L)
)

if k ∈ {i+ 1, .., i+ window}
From now on, we use the terms SG-NS and

SG (and likewise, SG-NS-BF and SG-BF) in-
terchangeably, since we only experimented with
the Negative Sampling approach of the Skip-gram
model.

5 Evaluation

5.1 PDEV Verb and Pattern Selection

We used only verbs that have at least two senses
that are statistically significant for our training
purpose. In particular, any sense having fewer
than 5 samples in the corpus was removed from
the pattern corpus. Afterwards, we discarded all

verbs having only one sense. Samples from con-
cordances of the remaining verb-senses were split
into a 80/20 distribution for training and testing
purposes, respectively. Some general statistics for
the selected verbs are reported in Table 2.

Total verbs 1276
Ambiguous verbs 688

Number of patterns 3074
Average pattern/verb 4.5

Training samples 166,288
Testing samples 43,101
Training/Testing 80/20

Table 2: Overall statistics of verbs used for train-
ing/testing

We also give statistics for certain verbs, most of
them having more than 10 different patterns in Ta-
ble 3. Among the remaining verbs, blow has the
highest number of senses at 48.

5.2 Training and Testing Setup for PDEV
Disambiguation

To evaluate our system, we used the Wikipedia
corpus, based on a dump from March 31, 20142.
The corpus has more than 3 million documents
and over 2 billion tokens. Some simple prepro-
cessing steps were performed. First we removed
markup tags, then we tokenized words by space,
keeping only alphabetic words and lower cased
them using the gensim Python library3. We POS-
tagged the corpus using spaCy library in Python 4.
Part-of-speech of a word is attached to the word
itself, so America will be changed to america-n.
For both the SG and SG-BF models, we only kept
the 200,000 most frequent words in the vocabulary
(they shared the same vocabulary). It should be
noted that we did not remove the high frequency
stop words from the vocabulary, if they are func-
tion words, such as on and in: the PDEV corpus
emphasizes prepositions as an important feature
for distinguishing patterns.

Our model learned vectors of 300 dimensions,
with the initial learning rate set at 0.025. The max-
imum context window was set at 4. This value
is informed by the work on Skip-gram hyper-
parameter tuning of Levy et al. (2015). As re-
ported in (Mikolov et al., 2013b), increasing

2http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-
pages-articles.xml.bz2. It was released on 2015/03/04.

3http://radimrehurek.com/gensim/about.html
4https://honnibal.github.io/spaCy/index.html

Verbs Patterns Samples Percentage used
Used Total Total Training Testing Pattern Sample

scratch 9 14 193 138 41 64% 93 %
see 11 21 507 384 100 52% 95%

sleep 10 11 1235 982 250 91% 100%
appear 10 12 3845 3069 769 83% 100%
nurse 6 10 199 150 41 60% 96%
pour 18 20 658 516 137 90% 99%
blow 48 62 1338 1019 283 77% 97%
lock 15 16 792 626 163 94% 97%
plant 10 13 418 325 87 77% 99%
ask 7 12 995 784 199 58% 99%

Table 3: Selected verbs and their number of selected senses and samples in corpus

the number of iterations does improve the perfor-
mance of word-analogy tasks, but not to a signif-
icant degree, so we only set 1 training iteration,
since the time taken to train one iteration can be
quite long (over 10 hours for each).

We use the following denotations for calculat-
ing verb-pattern prototype vectors. Let p be a pat-
tern of a verb w that has definition D and concor-
dance C of m samples. For each sample s ∈ C,
let Ts be the context window of size z; Ts,L, Ts,R
respectively be z context words to the left and to
the right of w; Ts = Ts,L∪Ts,R . Prototype vector
P is calculated as followings:

• SG

Pp = m ∗ vw +
∑

s∈C,u∈Ts

vu + α ∗
∑
u∈D

vu

p’s definition is treated just as a sample in the con-
cordance, scaled with weight α.

• SG-BF

Pp,L = m ∗ vw,L +
∑

s∈C,u∈Ts,L

vu,R

+ α ∗
∑
u∈D

vu,R

Pp,R = m ∗ vw,R +
∑

s∈C,u∈Ts,R

vu,L

+ α ∗
∑
u∈D

vu,L

Pp = Pp,L||Pp,R

It is noted that for SG-BF, we incorporate into
P ’s left component the right components of words
in Ts,L. The reason for that peculiarity is for the
context word u ∈ Ts,L, vu,R estimates the distri-
bution of words after u, which better approximates
context around target word w.

For evaluation, we use the window size of 4,
empirically chosen from values {3, 4, 5} and the
value of α is set to m

5 .
It should be pointed out that our verb-pattern

prototype vectors do not differentiate inflectional
forms of the verb, and they are grouped into the
same set of prototype vectors: this is mainly be-
cause the size of the training data is not large
enough to distinguish between different inflec-
tional forms.

After the prototype vectors have been calcu-
lated, one can use them to disambiguate a verb in
a new sample by calculating the context vector of
the sample in the same manner as used for creat-
ing prototype vectors. Disambiguation is carried
out by selecting the pattern prototype vector of the
target verb that has highest cosine similarity with
the calculated sample context vector.

5.3 Baseline

We took into consideration two baseline systems.

• Most frequent label (MF): We used the
same baseline as Maarouf and Baisa (2013).
For each verb, the most frequent pattern is as-
signed to all test. This baseline, however, is
too weak for the task, as many of the verbs
have numerous patterns.

• Random vector (RV): To evaluate the qual-
ity of word vectors themselves, we also used
a second baseline that generate random word
vectors and applied the SG averaging formula
to calculate prototypes. The RV baseline is a
better one to compare between SG and SG-
BF.

5.4 Evaluation Metrics

For each verb, we calculate the average F1
score with several different methods. The micro-

average F1 score is the harmonic mean of the mi-
cro average precision and micro average recall,
which are obtained by summing and dividing the
error types for all patterns at once. While the
micro-average F1 score is not a good indicator of
system performance when there is a dominant pat-
tern for a verb, the macro average F1 score can
compensate for the micro average F1 score weak-
ness by averaging the F1 score of each pattern for
the same verb. See for example (Ghamrawi and
McCallum, 2005). A weighted F1 score is also
calculated. It is a variation of macro score, weight-
ing patterns by their numbers of samples. It some-
what balances between micro and macro F1 score,
and will be the main calculation method we use to
evaluate our different models. In addition, we cal-
culate the average F1 score across verbs weighted
by number of samples in corpus5.

6 Results

6.1 PDEV Pattern Disambiguation Results

We gave the results of our two different Skip-gram
models applied for PDEV disambiguation against
a simple baseline using most frequency pattern in
the training data in Table 4. The result has showed
that results of both model has gained substantial
improvement against both baselines, and the Skip-
gram Backward-forward model designed specifi-
cally for verbs also beats its general-used variant
on most of considered verbs and on average F1-
score (+2 gain for all average metrics).

We also compare the performance of our sys-
tem with the results from El Maarouf et al. (2014).
They proposed two systems that we will call Boot-
strapping (BOOT) and Support Vector Machine
(SVD). The former proposed a bootstrapping
method that extracts collocates with verbs through
dependency relation, and recognize shared fea-
tures of verb patterns across training and testing
data set. The later proposed to use dependency
parsing to extract heads and dependents of verbs
and learn using Support Vector Machine. They
calculated unweighted average F1 score and ex-
perimented with only 25 verbs that are more fre-
quently seen in the corpus, therefore we also cal-
culate unweighted average F1 of our best system

5We used weighted averaging instead of unweighted av-
eraging as in Maarouf et al. (2014) because we experi-
mented with all released verbs (688 verbs), while they only
selected 25 frequent verbs. Performance of the different sys-
tems, therefore, needs to take into account the verb frequency
parameter.

for 23 of their 25 verbs (taking out two verbs break
and rush which at the point time of this paper,
is not completed yet), and reported together with
their two systems in Table 5 6:

Boot SVD SG-BF
Average-Micro 68% 82% 75%
Average-Macro 50% 52% 56%

Table 5: Unweighted F1 score of (El Maarouf et
al., 2014) two systems Bootstrapping (Boot) and
Support Vector Machine (SVD) compared to SG-
BF.

While SVD method beats our system in Micro-
Average metric, SG-BF showed its strength in dis-
ambiguating skewed verbs (ones that have domi-
nant pattern), reflecting by higher Macro-Average
value. Moreover, our system doesn’t require de-
pendency parsing and in fact it could benefit from
employing more sophisticated pre-processing as
well.

6.2 SG-BF in Analogy Tasks

To evaluate the performance of the Backward-
Forward model itself, we also used the analogy
task defined by (Mikolov et al., 2013a), specif-
ically for two syntactic categories gram-7-past-
tense and gram-9-plural-verbs. In addition, we in-
clude one more test set we have created for verb
antonym pairs which has analogy of type import
- export + open = close. The result is reported in
Table 6

Category SG-NS SG-NS-BF
gram-7-past-tense 46% 54%

gram-9-plural-verbs 61% 83%
antonym-verbs 11% 18%

Table 6: Performance of SG and SG-BF on some
semantic-syntactic analogy tasks.

The improvement of SG-NS-BF model on all
considered verb analogy tasks has proved that tak-
ing into account relative position of context and
current word could provide better verb vectors.

6.3 Error Analysis

To provide a qualitative analysis of the error, we
examined the verb visit as an example. It has three
patterns listed in the PDEV corpus (Table 7). The

6Their calculation is on an older snapshot of PDEV.

Sel. verb
Micro-average F1 Macro-average F1 Weighted-average F1

MF RV SG BF MF RV SG BF MF RV SG BF
scratch 20 32 51 46 4 29 54 41 6 31 51 44

see 30 47 55 56 4 30 38 41 14 47 55 58
sleep 80 57 69 75 9 40 46 38 71 63 73 79

appear 26 70 78 86 4 46 55 58 11 69 79 86
nurse 46 46 60 61 10 44 54 58 29 45 61 61
pour 31 42 55 48 3 37 46 44 15 41 55 48
blow 15 39 53 55 0 31 42 43 4 41 52 55
lock 20 51 52 57 2 32 38 48 7 53 52 59
plant 51 33 56 45 7 25 35 31 34 41 59 46
ask 40 72 65 79 8 65 55 67 23 75 65 81
All 53 59 70 72 16 44 56 58 39 61 71 73

Table 4: Performance of SG and SG-BF on PDEV disambiguation task across selected verbs and average.
BF is short for SG-BF.

confusion matrix of the SG-BF results is given in
Table 8:

No. Pattern

1
Human or Human Group visits Location
Human goes to and spends some time in Location
for tourism, business, or some other purpose

2
Human 1 visit Human 2
Human 1 goes to and spends some time with Human
2, typically for social reasons

3

Human visit (Location)
Human goes to spend some time (typically only part
of a day) at Location = Educational in order to
see or learn something

Table 7: Pattern definition for the verb visit.

As can be seen from the confusion matrix, most
mistakes are from classifying instances of pattern
1 as pattern 2 or 3. Arguably, there is meaning
overlapping between patterns 1 and 3, leading to a
high confusion between these two classes. For the
misclassification to pattern 2, there are two pos-
sible explanations. One is that the model failed
to predict the semantic category of unseen human
names, and indeed drops the objects of samples
in pattern 2 out of the context window in training.
Another more likely explanation is that collocates
of type Location in the first pattern belong to dif-
ferent word distributional modes, such as general
locations (school, church, etc.) and specific lo-
cations (China, Washington etc). Averaging over
them might result in a low quality prototype vec-
tor. This suggests a model that would devise mul-
tiple prototype vectors for each pattern.One more problem with the SG-BF model is
that it seems to perform poorer than the SG model
on verbs with less data. In particular, the weighted
average F1 score went down for plant and scratch,

1 2 3
1 143 24 20
2 4 77 0
3 2 0 3

Table 8: Confusion matrix of SG-BF result for
the verb visit. Rows correspond to true labels,
columns correspond to predicted labels.

while being the same for nurse. Another error
that we noted from analyzing the verb plant is that
it could not disambiguate the case where there is
an alternation between a direct object and other
oblique phrases (plants a tree vs plants land with
trees). This problem is arguably inherent to both
SG and SG-BF models. Further investigation into
these errors will be left for future work.

7 Conclusion

In this paper, we have presented a method for
applying distributional techniques, in particular,
skip-gram models, to create verb pattern prototype
vectors, in order to tackle the problem of pattern
disambiguation in the PDEV corpus. We intro-
duce a novel model that builds upon the skip-gram
framework, taking into account relative position-
ing of word and context, and demonstrate that our
model can build a set of high quality verb vectors,
achieving a competitive performance on the task
of PDEV pattern disambiguation, scoring the best
Macro-Average F1 score among the current sys-
tems. Further, we believe this is the first experi-
ment to evaluate and report results over the entire
set of completed verbs from the PDEV corpus.

References
Vit Baisa, Jane Bradbury, Silvie Cinkova, Ismail El

Maarouf, Adam Kilgarriff and Octavian Popescu.
2015. SemEval-2015 Task 15: A Corpus Pattern
Analysis Dictionary-Entry-Building Task. SemEval
2015.

Marco Baroni and Alessandro Lenci. 2010. Distri-
butional Memory: A general framework for corpus-
based semantics. Computational Linguistics 36(4):
673-721.

Marco Baroni, Raffaella Bernardi, Roberto Zamparelli.
2014. Frege in space: A program for compositional
distributional semantics. Linguistic Issues in Lan-
guage Technologies 9(6): 5-110.

Stephen Clark. 2015. Vector Space Models of Lexical
Meaning. Handbook of Contemporary Semantics
second edition, edited by Shalom Lappin and Chris
Fox. Wiley-Blackwell.

Ismail El Maarouf and Vit Baisa. 2013. Automatic
classification of patterns from the Pattern Dictionary
of English Verbs. Proceedings of JSSP.

Ismail El Maarouf, Jane Bradbury, Vit Baisa and
Patrick Hanks. 2014. Disambiguating Verbs by
Collocation: Corpus Lexicography meets Natural
Language Processing. Proceedings of LREC, Reyk-
javik.

Christiane D. Fellbaum. 1998. Wordnet: an electronic
lexical database MIT Press.

Nadia Ghamrawi and Andrew McCallum. 2005. Col-
lective multi-label classification. In Proceedings of
the 14th ACM international conference on Infor-
mation and knowledge management (pp. 195-200).
ACM.

Patrick Hanks and James Pustejovsky. 2005. A pattern
dictionary for natural language processing. Revue
Francaise de Linguistique Appliquee.

Patrick Hanks. 2013. Lexical Analysis: Norms and
Exploitations, Cambridge. MIT Press.

Zellig S. Harris. 1968. Mathematical Structures of
Language., Wiley, New York.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving Word
Representations via Global Context and Multiple
Word Prototypes. ACL.

Walter Kintsch. 2001. Prediction. Cognitive Science,
25(2), 173-202.

Omer Levy, Yoav Goldberg and Ido Dagan. 2015.
Improving Distributional Similarity with Lessons
Learned from Word Embeddings. TACL 2015.

Diana McCarthy, Rob Koeling, Julie Weeds, John Car-
roll. 2004. Finding Predominant Word Senses
in Untagged Text, Proceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics, 280287, Barcelona, Spain.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean Efficient Estimation of Word Representa-
tions in Vector Space In Proceedings of Workshop at
ICLR 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, Jeffrey Dean Distributed Representations of
Words and Phrases and their Compositionality In
Proceedings of NIPS 2013.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
Models of Semantic Composition. ACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, Andrew McCallum. 2014. Efficient Non-
parametric Estimation of Multiple Embeddings per
Word in Vector Space. EMNLP.

Alexandre Passos, Vineet Kumar, Andrew McCallum.
2014. Lexicon Infused Phrase Embeddings for
Named Entity Resolution. CoNLL 2014.

James Pustejovsky 1995. The Generative Lexicon.
MIT Press.

James Pustejovsky, Patrick Hanks and Anna
Rumshisky 2004. Automated Induction of
Sense in Context. COLING, Geneva, Switzerland.

James Pustejovsky, Catherine Havasi, Jessica Littman,
Anna Rumshisky, and Marc Verhagen. 2006. To-
wards a generative lexical resource: The brandeis
semantic ontology. Proceedings of the Fifth Lan-
guage Resource and Evaluation Conference.

Anna Rumshisky, Patrick Hanks, Catherine Havasi,
and James Pustejovsky. 2006. FLAIRS Conference.

John Sinclair. 1966. ”Beginning the Study of Lexis”
in C. E. Bazell, J. C. Catford, M. A. K. Halliday,
and R. H. Robins (eds.) In Memory of J. R. Firth.
Longman.

John Sinclair. 1987. Looking Up: an Account of
the Cobuild Project in Lexical Computing. Harper-
Collins.

John Sinclair. 1991. Corpus, Concordance, Colloca-
tion. Oxford University Press.

John Sinclair. 2004. Trust the Text: Language, Corpus,
and Discourse. Routledge.

Richard Socher, John Bauer, Christopher D. Manning
and Andrew Y. Ng. 2013. Parsing with Composi-
tional Vector Grammars. In Proceedings of the ACL
Conference 2013.

Yorick Wilks. 1975. A Preferential, Pattern-Seeking,
Semantics for Natural Language Inference. In: Ar-
tificial Intelligence 6(1).

