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Abstract
In this paper, we present results from a deep neural network event classifier that uses lexical semantic features derived from parameters
that are underspecified in the event typing. These results demonstrate that the presence or absence of an underspecified feature is a
strong predictor of event class, and we propose a model for extending this approach to action recognition (i.e., the recognition of
processes enacted by an agent) by using reinforcement learning to learn complex actions from object motions, and then “factoring out”
the specifics of the object to recognize an action denoted by an agent motion, such as a gesture, alone.
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1. Introduction
Work in event visualization from natural language descrip-
tion (e.g., (Coyne and Sproat, 2001; Siskind, 2001; Chang
et al., 2015) among others) often struggles with the prob-
lem of underspecified parameters in events enacted over ar-
bitrary objects. These parameters may be inherent to the
event itself (e.g., speed, direction, etc.), or properties of
the object argument(s) (e.g., axis of rotation, geometrical
concavity, etc.). Should a computational visualization sys-
tem use an inappropriate value for one of these parameters,
it may generate a visualization for a given event that does
not comport with a human viewer’s understanding of what
that event is, such as rotating a cylindrical object about its
non-major axis for a “roll.” Previously we explored these
issues and solutions to them in (Krishnaswamy and Puste-
jovsky, 2016a; Krishnaswamy and Pustejovsky, 2016b; Kr-
ishnaswamy, 2017).
Event recognition from the perspective of visual data pro-
cessing or object tracking (cf. (Yang et al., 2013)) provides
a venue to explore “learning from observation,” and as a
domain has achieved recent relevance in human commu-
nication with robotic agents (Yang et al., 2015b; Paul et
al., 2017). Captured three-dimensional sequences of la-
beled events performed by human actors can be classified
as distinct event types. Learning can abstract away the
parameters that vary across instances of the same motion
class in the data, making those parameters underspecified
as well, as in the visualization problem discussed above.
In order for an embodied agent to interact with objects, the
agent must use its hands, and the hand motions effect forces
upon the object, and therefore the action undertaken with
it. Thus, we expect that the same parameter abstraction ap-
proach can be used for the agent’s hand motions, regardless
of whether an actual object is being manipulated. This cre-
ates a path toward action recognition from hand gestures
only.
We assume causal events are composed of an object model,
which captures the change an object is undergoing over
time, and an action model, which characterizes the activ-
ity that inheres in the causing agent (Pustejovsky and Kr-
ishnaswamy, 2016). We have been exploring event visu-
alization through multimodal simulations using scenarios
involving objects moving, and event learning and compo-

sition through observation focusing on the object position
sequence rather than the agent motion. In this paper, we
will present results from the former system and methodol-
ogy from the latter to introduce a framework for learning
action recognition from the movements of the agent rather
than the object. We expect such a framework may be useful
for recognizing and evaluating the actions denoted by agent
motions enacted without attached objects, e.g., by gestures.

2. Related and Prior Research
Event detection and classification in NLP often rely on deep
learning algorithms that exploit shallow lexical features and
word embeddings. While these approaches are able to take
advantage of big data resources for scalability, they often
fail to leverage richer semantic information that situates the
event in the world (Spiliopoulou et al., 2017), which is an
important factor in QA and event understanding (Saurı́ et
al., 2005).
An agent’s embodiment might be a physical presence or
merely a point of view, but it provides important knowl-
edge about objects in the world, their situatedness, and their
availability for different types of interactions. Therefore,
we created visualizations of events in a three-dimensional
visual event simulator, VoxSim (Krishnaswamy and Puste-
jovsky, 2016a; Krishnaswamy and Pustejovsky, 2016b),
and its underlying modeling language, VoxML (Puste-
jovsky and Krishnaswamy, 2016), while varying the param-
eters that are left underspecified in the event semantics (as
encoded in VoxML), and then presented the visualizations
for human evaluation to determine a set of “best values” for
said parameters.
Event recognition that combines language and visual data
for various purposes is a subject of many models and ap-
proaches within the computer vision (Ikizler et al., 2008;
Gupta et al., 2009; Cao et al., 2013; Siddharth et al.,
2014; Andriluka et al., 2014) and computational linguis-
tic (Ronchi and Perona, 2015; Gella et al., 2016) commu-
nity. Our rich model of events and their participants also fa-
cilitates human communication with a computational agent
(Pustejovsky et al., 2017), and so we use the annotation ca-
pabilities of VoxML to annotate and learn event represen-
tations from existing video data (Do et al., 2016; Do and
Pustejovsky, 2017a). Since these two lines of research ap-
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Figure 1: Sample VoxML semantics: [[SLIDE]]. Note the
absence of speed and direction parameters, indicating they
are underspecified. (EC refers to the Region Connection
Calculus (Randell et al., 1992) relation “externally con-
nected”)

proach event classification and learning from the generation
and the recognition sides, respectively, we aim to bridge
the two to create a multimodal event representation capa-
ble of being learned from sparse data (a la (Do and Puste-
jovsky, 2017b; Zellers and Choi, 2017)), that can separate
the object motion from the complete event model, leaving
the agent’s motion, or “action model.”

3. Event Classification
Using VoxSim, we generated three visualizations for each
input sentence of the imperative form V ERB x (or V ERB
x RELATION y for those verbs requiring an adjunct).
The visualizations were presented to Amazon Mechani-
cal Turk workers for evaluation in a pair of tasks, one
of which gave the Turkers a single animated movie of an
event and asked them to select, out of three heuristically-
generated possible captions (one of which was the origi-
nal input sentence; the other two vary either the verb or
the indirect object if applicable), the best one. Multiple
options were allowed as was “none.” Each Human Intel-
ligence Task (HIT) was completed by 8 individual work-
ers, for a total of 26,856 individual evaluations. This task
effectively required annotators to predict which sentence
was used to generate the visualization in question. As this
closely resembles event classification with a discrete label
set, these results (Krishnaswamy, 2017) provide a “ground
truth” against which to assess machine-learning algorithms
performing an analogous task.

Figure 2: Sample VoxSim capture as presented to evalua-
tors. Caption options for this video were a) “put the block
touching the spoon”; b) “move the block” (the original in-
put sentence); and c) “put the block near the bowl.”

During the visualization process, we saved feature vectors

containing the randomly-generated values for those param-
eters of each verb that were left underspecified in its seman-
tic encoding. As certain verbs (such as “move”) are highly
underspecified, with most parameters left without assigned
values, while others (for example, “put”) may have only
one or a few underspecified parameters, these feature vec-
tors were given sparse representations as JSON dictionaries
that were then “densified” with empty values for machine
learning.

{"MotionSpeed":"12.21398",
"MotionManner":"turn(front cover)",

"TranslocSpeed":"",

"TranslocDir":"",

"RotSpeed":"",

"RotAngle":"104.7686",

"RotAxis":"",

"RotDir":"",

"SymmetryAxis":"",

"PlacementOrder":"",

"RelOrientation":"",

"RelOffset":""}

Figure 3: “Densified” feature vector for “open the book”
action, showing list of parameters evaluated against

The task put to the classifiers trained on these feature vec-
tors was to pick the verb of the input sentence that generated
the feature vector and its associated visualization, out of ei-
ther the same three choices given the human evaluators for
the same question (the “restricted” choice set), or all action
verbs in the test set (the “unrestricted” choice set).

move(x) put(x,touching(y)) flip(x,edge(x))
turn(x) put(x,on(y)) flip(x,center(x))
roll(x) put(x,in(y)) close(x)
slide(x) put(x,near(y)) open(x)
spin(x) lean(x,on(y))
lift(x) lean(x,against(y))

Table 1: Event predicate test set

We first established a baseline by feeding these feature vec-
tors into a maximum entropy logistic regression classifier
using generalized iterative scaling. Next we trained a multi-
layer neural network, consisting of four layers of 10, 20, 20,
and 10 nodes, respectively, using the TensorFlow frame-
work (Abadi et al., 2016) with a variety of variations:

1. A “vanilla” four-layer DNN
2. DNN with features weighted by IDF metric1

3. DNN with IDF weights on only “discrete” features
(those features which are maximally specified by
choosing a value assignment out of a set of categories
rather than a continuous range—i.e., motion manner,
rotation axis, symmetry axis, placement order, and rel-
ative orientation)

1The “inverse document frequency” of a feature (the “term”)
in a vector (the “document”). Since each feature occurs at most
one time in each feature vector, tf for any feature and any vector
is either 1 or 0, making TF-IDF over this dataset identical to IDF



4. DNN excluding feature values and including IDF-
weighted binary presence or absence only

5. A combined linear-DNN classifier, using linear esti-
mation for continuous features and DNN classification
for discrete features

6. Combined linear-DNN classifier with features
weighted by IDF metric

7. Combined linear-DNN classifier with IDF weights on
the discrete features only

8. Combined linear-DNN classifier excluding feature
values and including IDF-weighted binary presence or
absence only

10-fold cross-validation was run on the baseline and all
neural net classifier variations for up to 5,000 training steps,
with a convergence threshold of .0001 for the MaxEnt al-
gorithm.

µ Accuracy µ Accuracy
Classifier (restricted set) (unrestricted set)
Baseline 0.4850 0.1662
DNN variant 1 0.9788 0.9514
DNN variant 2 0.9788 0.9547
DNN variant 3 0.9800 0.9550
DNN variant 4 0.9895 0.9707
DNN variant 5 0.9615 0.9150
DNN variant 6 0.9600 0.9144
DNN variant 7 0.9615 0.9675
DNN variant 8 0.9871 0.9150

Table 2: Mean classifier accuracy across cross-validation

All DNN variations identified the motion predicate with
greater than 90% accuracy even when given a choice of
all available motion predicates. Both DNN and combined
Linear-DNN methods that used feature IDF weights only
in place of actual feature values actually outperformed all
other methods. In the purely deep learning network, the
weights-only method (variant 4) ends up besting all the
others slightly (by about 1-2%). Independent of its actual
value, the presence or absence of a given underspecified
feature turns out to be quite a strong predictor of motion
class.
For this event classification task, we used simulated visu-
alizations of objects moving without being affected by an
agent. Since an event’s exact manner of underspecification
depends on which parameters are missing from the event
semantics, we can intuit that, in an action performed by
an agent, whether real or simulated, if those same parame-
ters do not remain constant across multiple iterations of the
same event, that should be a signal that those agent motions
are also denoting an event where those same parameters are
underspecified or missing.

4. Complex Event Learning
Many of the events or actions used in the task outlined in
Section 3. are quite complex. For example, lean(x, on(y))
requires a series of rotations of x and then a movement of
x so that it touches y in an appropriate configuration. Even
something conceptually simple, such as put(x, near(y)),

requires a series of translations that can be difficult for a
computer to distinguish from other types of motions involv-
ing changing relations between two objects.
As this is a sequential learning problem, we turn to LSTM
(Hochreiter and Schmidhuber, 1997) to learn the sequence
of primitive events that comprise a complex event. LSTM
has found utility in a range of problems involving sequen-
tial learning, such as speech and gesture recognition. If the
sequence can be effectively learned, it should be able to be
reproduced by a virtual embodied agent, whose objective is
to produce a sequence of actions that resembles movement
of objects in the training data. This type of parameterized
reinforcement learning is best solved by using policy gra-
dients (Gullapalli, 1990; Peters and Schaal, 2008). Here,
we use the REINFORCE algorithm (Williams, 1992), for
its effectiveness in policy gradient learning.
Using ECAT, an open-source event capture and annotation
tool (Do et al., 2016), we capture performers interacting
with objects on a table to replicate the virtual scenes gen-
erated with VoxSim, but with the presence of a real agent
to manipulate the objects. For the purpose of event learn-
ing we limit the object set to only blocks. Video is cap-
tured with Microsoft Kinectr depth-sensing cameras, ob-
jects are tracked using markers fixed to their sides, and
three-dimensional coordinates of performer joints are also
captured and annotated. ECAT annotation provides a map-
ping to VoxML object and event semantics.

Figure 4: Performing an object interaction

Captured object positions are then flattened to two dimen-
sions in order to normalize any jitter in the capture and al-
low for easier evaluation of object relations relative to the
table surface. This simplified simulator is written in Python
and allows for simulation of data that is similar to the real
captured data without the graphics overhead required by
VoxSim.
A sequence of feature vectors, S, which represent the quali-
tative spatial relations between the objects in the action cap-
tures or the simplified simulator, is fed to an LSTM network
along with a frame number i and an event e. The network
outputs a function f(S, i, e) = 0 ≤ qi ≤ 1 that estimates
the progress of e at frame i.
The virtual agent’s objective is then to manipulate the ob-
jects in sequence, for a reward that is greater when the
generated sequence more closely approximates the move-
ment of objects in the training data. We aim to achieve
this via reinforcement learning, using the REINFORCE
algorithm with a Gaussian distribution policy πθ(u|x) =
Gaussian(µ, σ), where dim(µ) is the degree of freedom



Figure 5: Simplified simulator in two dimensions

in position (2 dimensions) and dim(σ) is the degree of free-
dom in orientation (1 dimension).
Planning is parameterized by policy parameters θ : uk ∼
πθ(uk|xk), where uk is the motion performed by the agent
at step k and xk is current set of relations between objects.
µ and σ are learned by an artificial neural network weighted
by θ from the REINFORCE algorithm, which is determined
by gradient descent.
We simulate each atomic object manipulation uk, record
the frame-to-frame sequential features, feed them into
LSTM network to estimate how fully uk completes the
complex event in question, then calculate the immediate re-
ward as the difference between the complex event progress
at the beginning of uk and at the end of uk, and finally se-
lect the agent move that leads to the highest reward.
The result is a sequence that can be executed by a virtual
agent within the VoxSim environment. If successful, a hu-
man judge watching this executed event should agree that
it satisfies the event class of the description as in the event
classification task described in Section 3.. Experiments are
currently ongoing to test this model of event learning (Do
et al., 2018).

5. Extracting Actions from Events
Where captured instances contain multiple object configu-
rations or permutations under the same label (for example,
building rows of varying numbers of blocks or putting two
objects near each other in various orientations), the LSTM
learns event progress by changes in object relations, such
as the number and relative orientation of EC or “touch-
ing” relations between objects in a row. This allows the
REINFORCE algorithm to generalize a concept (e.g., row)
to set of common relations across all captured or simulated
instances without a set number of blocks. This makes the
parameters that vary across the captured instances under-
specified.
As we have shown that underspecified motion features ap-
pear to be strong signals of event class for objects moving in
isolation, we expect the same principle holds for objects be-
ing manipulated by an agent, especially as one of the goals
of our reinforcement learning pipeline is to abstract away
those parameters whose values vary across the performed
or simulated example actions.
For instance, let us return to the semantics of “slide” pre-
sented in Figure 1. One of the requirements is that at all

Figure 6: Frame of an agent demonstrating a gesture repre-
senting “slide”

times the moving object is kept EC (externally connected)
with the supporting surface. Since in a 3D environment,
all motions eventually break down into a series of trans-
lations and rotations, all relations between objects can be
represented as relative offsets and orientations, as in the
reinforcement learning trials. Thus, if “sliding” motions
of various speeds and moving in various directions all re-
turn roughly equal rewards as long as the object remains
attached to the supporting surface (as the LSTM should
produce high values of event progress for all these mo-
tions given enough performed examples), the REINFORCE
algorithm should be able to generate an event sequence
wherein many values for these parameters can be sampled
from the Gaussian distribution, and the action, when per-
formed by an agent with those values, should satisfy an ob-
server’s judgment given the “slide” label. Thus the high
variance of motion speed and motion direction comport
with those parameters’ status as strong signals of the “slide”
event class.
Since in the 3D simulated world with the agent, objects are
manipulated by attaching them to the agent’s “graspers” or
hands, so that the motion of the hand controls the motion of
a grasped object, it is the motion of the hand that dictates
what class of action is being undertaken. Thus in the above
example, if the hand motion may take a wide variety of val-
ues of speed and direction but always maintains a constant
or near-constant vertical offset with the surface (represent-
ing the height of the object being moved), then this motion
may be interpreted as representing a “slide,” regardless of
whether or not any actual object is being moved. If no ob-
ject is moved along with the hand, this “action model” be-
comes a “mime” or gestural representation of the action in
question.

6. Conclusion
In this paper, we have argued and presented evidence that
underspecified parameters associated with motion events
can serve as reliable indicators of a particular event class.
We have also presented a framework for action learning that
relies on abstracting away those motion parameter values
that may vary across individual instances and performances
of events. These two avenues naturally combine to create
a pipeline for action recognition by a computational agent
using information from visual and linguistic modalities (cf.
(Yang et al., 2014; Yang et al., 2015a), and for using ac-



tion performance and gestural representations of actions as
a learnable communicative modality between humans and
computers.
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